On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice

نویسندگان

  • Félix Bou
  • Francesc Esteva
  • Lluis Godo
  • Ricardo Oscar Rodríguez
چکیده

This article deals with many-valued modal logics, based only on the necessity operator, over a residuated lattice. We focus on three basic classes, according to the accessibility relation, of Kripke frames: the full class of frames evaluated in the residuated lattice (and so defining the minimum modal logic), the ones evaluated in the idempotent elements and the ones only evaluated in 0 and 1. We show how to expand an axiomatization, with canonical truth-constants in the language, of a finite residuated lattice into one of the modal logic, for each one of the three basic classes of Kripke frames. We also provide axiomatizations for the case of a finite MV chain but this time without canonical truth-constants in the language.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Fuzzy Modal Semantics by Fuzzy Multimodal Systems with Crisp Accessibility Relations

In [1] the authors considered finitely-valued modal logics with Kripke style semantics where both propositions and the accessibility relation are valued over a finite residuated lattice. Unfortunately, the necessity operator does not satisfy in general the normality axiom (K). In this paper we focus on the case of finite chains, and we consider a different approach based on introducing a multim...

متن کامل

A Hennessy-Milner Property for Many-Valued Modal Logics

A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Henne...

متن کامل

T-norm-based Fuzzy Logics and Logics for Human Reasoning

In [1] the authors considered finitely-valued modal logics with Kripke style semantics where both propositions and the accessibility relation are valued over a finite residuated lattice. Unfortunately, the necessity operator does not satisfy in general the normality axiom (K). In this paper we focus on the case of finite chains, and we consider a different approach based on introducing a multim...

متن کامل

TREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS

In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...

متن کامل

Modal twist-structures over residuated lattices

We introduce a class of algebras, called twist-structures, whose members are built as special squares of an arbitrary residuated lattice. We show how our construction relates to and encompasses results obtained by several authors on the algebraic semantics of non-classical logics. We define a logic that corresponds to our twist-structures and show how to expand it with modal operators, obtainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011